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ABSTRACT

Given in this report is a solution technique for the 2-dimensional,
incompressible Navier-Stokes equations for Reynolds numbers much
larger than 1.

Given also in this report are results obtained with this solution
technique, for the steady backward facing step flow. Results have
been obtained for a Reynolds number of 50. No results have been
obtained for Reynolds numbers higher than 50.
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NOTATIONS

symbols

b constant in front of the space derivatives of the
unsteady continuity equation

cex weight coefficient for the contribution of the pressure
gradient in x~direction at the concave corner of the step,
to the weighted pressure gradient at that corner

cey weight coefficient for the contribution of the pressure
: gradient in y-direction at the concave corner of the step,
to the weighted pressure gradient at that corner

. cvx weight coefficient for the contribution of the pressure
gradient in x-direction at the convex corner of the step,
to the weighted pressure gradient at that corner

cvy welght coefficient for the contribution of the pressure
gradient in y-direction at the convex corner of the step,
to the weighted pressure gradient at that corner

index used for horizontal mesh lines

wave number

B R e

index used for vertical mesh lines

nX: 96t number of vertical mesh lines from the inlet up to and
including the vertical wall of the step

nX tlet number of vertical mesh lines from the vertical wall of
the step up to and including the outlet

NY: 16t number of horizontal mesh lines from the lower wall of
Lo the inlet part up to and including the upper wall

Yt nunber of horizontal mesh lines from the lower wall of
step the outlet part up to and including the lower wall of
the inlet part

P pressure

Re Reynolds number based on the maximum velocity component
in x-direction at the inlet, and on the step height in
the physical domain

t time

u velocity component in x-direction

v velocity component in y-direction

X coordinate in the physical domain

X coordinate in the computational domain
v coordinate in the physical domain

v coordinate in the computational domain
A eigenvalue

u dynamic viscosity

P density

w

Vwi+w§



-\ -

W frequency x-dependent Fourier-component
wy frequency y-dependent Fourier-component
subscripts

step convex corner of the step

upper upper wall



1. INTRODUCTION

The 2~dimensional, incompressible Navier-Stokes equations,
describing a steady flow problem are
ou v
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Introducing the non-dimensional quantities

system (1.1) can be rewritten in the following form
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Introducing next
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(1.3)

(1.4)

the 2-dimensional, incompressible Navier-Stokes equations become

in non-dimensional forn
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A well-known iterative technique to solve this system of equations
is to solve at first the Poisson equation for the pressure
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, which can be obtained form both momentum equations, and in which

(1.6)

the supersript ¢ and £+1 indicate two successive iteration levels.
Using the continuity equation above Polsson equation simplifies to

o/ v

!
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Using the known pressure at iteration level Z+1 the following
Poisson equation for respectively u and v at iteration level £+1
can be solved
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A simpler solution technique which avoids the cumbersome solution
of a Poisson equation for both u,v and p at each iteration level
has been chosen. Chosen has been the solution technique intro-
duced by Chorin (ref.1). In the solution technique introduced by
Chorin the 2-dimensional, incompressible Navier-Stokes equations
are solved by marching in time, using the system of equations
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The solution of the original system (1.5) will have been obtained
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as soon as in the time marching procedure the steady state has been
reached; i.e. as soon as the time derivatives in (1.10) can be
neglected with respect to the space derivatives.

The constant b has been introduced in the continuity equation as a
constant to be used for the optimization of the rate of convergence
of the time marching procedure.

Concerning the time discretization: chosen can be between an
explicit or implicit time discretization. When Chorin introduced
the artificially time-dependent system (1.10), no good explicit
time discretizations were available; i.e. no time discretizations
which were stable for flows for which Re>1. Nowadays these time
discretizations do exist. Nowadays the choice can therefore be
made between an explicit or implicit time discretization. Chosen
has been an explicit time discretization; chosen has been: Runge-
Kutta.

Concerning the space discretization: chosen can be between a finite
difference, a finite volume or a finite element discretization.
Chosen has been a finite difference discretization; chosen has been

the five-points scheme given in fig.1.7.

For the considered flow problem; the backward facing step flow, use
could be made of various computational results presented at a GAMM
Workshop (ref.2), and also of computational results recently
obtained at VKI with an implicit time discretization and a finite
volume space discretization.



2. COMPUTATIONAL METHOD

2.1. Streteching

In order to have a sufficient number of points in flow regions with
large gradients, but also a total number of points which is as small
as the accuracy allows, a non-equidistant mesh has been used. For
simplicity the space discretization has not been performed in the
non-equidistant mesh in the physical domain, but in an equidistant
mesh in the computational domain. Both meshes are related with

each other by stretching functions. Using as x,y-coordinate system
in the physical domain, the coordinate system given in fig.2.1,

and using the notations X and y for the coordinates in the computa-
tional domain, the stretching functions used can be written in the

following way
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For Xstep’ ystep and yupper it holds
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in which is:
- nx the number of vertical mesh lines from the inlet up to

and including the vertical wall of the step,

inlet®

NXutlet’ the number of vertical mesh lines from the vertical
wall of the step up to and including the outlet,

- nystep: the number of horizontal mesh lines from the lower wall
of the outlet part up to and including the lower wall of
the inlet part, and

- 0Yiett the number of horizontal mesh lines from the lower of

the inlet part up to and including the upper wall.

With the constant power in respectively (2.1) and (2.3) the

stretching can be changed; the larger the power, the more stretched
the mesh.

2.2. Runge-Kutta schemes

In order to discuss the Runge-Kutta schemes, consider the system
of equations

-
st_Fez) (2.6)

with in the left hand side the time-dependent part and in the right
hand side the space operator. Consider now to be known the
solution s at iteration level Z, and to be computed the solution s
at the next iteration level; iteration level Z+41.

A general Runge-Kutta scheme, i.e. a Runge-Kutta scheme consisting
of n steps has the following form

3.3l gt 150 \
T2 §’+C[ZA£F(51)+£A£'/-(;P)
33 3y+03AfF($ )+F>3AEF(5)+C3AEF(5 > (2.7)
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*&”=§f+anAéf75“’ J+ by 2k F (3" )y ab F(3m3) 4 L L.
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It is composed of n-1 predictor steps (the first n-1 steps) and 1
corrector step (the last step).

With a n-steps Runge-Kutta scheme, i.e. a Runge-Kutta scheme
consisting of n steps, nth order accuracy in time can be obtained.
A good accuracy in time is however not important when considering
a steady flow problem. Important in that case is a fast conver-

gence.

An improvement of the rate of convergence of (2.7) can be obtained
by simplifying it to

3.3 /+A£ FCSJ) ]
32_.3"7+A£ Fez)
>3 > 7.)
3725 +A£F(5 (2.8)
201 ?f’ s Fezme)
shr_sdy aat Fem) e Bab FLem2) v cak FGG7) 4 )
The space operator F is composed of a convective and viscous
operator;
Fir-Cesy i Vo (2.9)

An improvement of the rate of convergence of (2.8) can now be

obtained by simplifying it to

el 4 {Cshi Vizh) ‘
2 _ ? .J{C(5U+\454}
s_z! +aH{ (3% + Vish) L (2.10)

9

wuy Ly Ln,;

3 ;Az{ CeryVizh )
f” '5’ + aAé{C(E’”" +\/5’[ }+£AZ{C( 2n2), iz [)}+ cAl{C(""")+V(S’p)}+ e )

» s0 by applying the viscous operator only in the first predictor

step.

The time steps to be taken with the Runge-Kutta schemes are
limited by stability requirements. Since a good accuracy in time
is not important for steady flow problems, one does not need to
take the same time step at each mesh point. Assuming that the
larger the time steps taken, the better the rate of convergence,
the best rate of convergence is obtained by taking at each mesh
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point the maximum allowable time step.

For for instance the three-steps Runge-Kutta scheme which is third
order accurate in time it holds: a=1/6, b=1/3 and c=1/2. Since a
good accuracy in time 1s not important these coefficients may be
changed such that a better rate of convergence is obtained. This
now has been investigated for the Runge-Kutta schemes of the form
(2.10) from n=2 up to and including n=6. The optimization of the
coefficients has been performed numerically. The results obtained
are given table 2.1.

From table 2.1 it appears that (theoretically) the four-steps
Runge-Kutta scheme is the fastest scheme. The five-steps and six-
steps Runge-Kutta schemes may be unstable when using them. The
neutral stability curves of these schemes jump away from the origin
at the left side of the imaginary axis. These schemes are there-
fore unstable for eigenvalues of the Navier-Stokes equations which
have a very small real part.

The neutral stability curves belonging to the five Runge-Kutta
schemes of table 2.1 are given in fig.2.2.

2.3. Stability analysis

In order to determine the eigenvalues A of system (1.10) one can
introduce

o (U
vlo % ghwwﬁy) (2.11)
f

Substitution of (2.711) into (1.10) yields, written in matrix form

1
_uiwx-viﬁy—ReG4:+u7J—l 01 -y Lj
o —u:’wx-\/iwy-RZ(wj+w)%)—)\ -lw \/ =0 (2.12)
-biw, -biw/ —/{ P
U
A non-trivial solution |V | exists if the determinant of above
matrix is zero, so if F
a,+A o ay
[} Qrf'h 03 =0 (2 ) 1 3)
a,b asb A




with

1
a,gi(wxu+u7v)+Re(%§+wz)

4

azz I.(.L/x q (2.14)

Uz = /‘w),

From (2.13) it follows for the eigenvalues

A1= -Q{

1
A —QxiVé}+45(af+a§)
23= 3

Substitution of (2.14) into (2.15) yields

1
A,:-i(wxu+uyv)—ﬁz(w;+aﬁ)

/

7 1 1
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Introducing

tu=Vw§+e;

(2.15)

(2.16)

0362 - > (2.17)

w
3ma=7%
we can write

[99)
A= =iw (ucoae +vaing - [ ﬁe_)

W
)tl&:Tﬁcoﬂe +VvIinG-(Re fwb~{l'(UC036+ vaing) + R

—iw %ﬂzj (2.18)

Using the relation

N=-iwﬁy ; j‘”lj (2.19)

between the eigenvalues Aj and the propagation speeds wj one
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obtains as expressions for the propagation speeds

w
W= UCOI0 + VIinG - ( Ae

1 W \/ Yy
Wy 3=2 |LCOIG+VING -] Re * 4b-Z{( (ucong + vain e)+ Re}

These now are the expressions for the propagation speeds in the

(2.20)

physical domain. The expressions need to be transformed to the
computational domain. Denoting quantities in the computational

domain with a bar, the relations to be used for the transformation
are

W N
AT
c028/x!
016 =1 /<228 /ne > (2.21)
( mn)e/v(’
sine =1 /[ 28] +(z§3_@) /

. . dx d
1 28X 1 =8Y
in which x E and y a5

With (2.21) obtained can be from (2.20)
g ng  Wa fc018)2 [2ind)z A
\7/1=u£%‘g+v3)’%§_[ﬂe (c;' +97—)

_ _L[ 018 yme ulq/coe) / né) > (2.22)
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For the discretized problem in the computational domain introduced
then has to be

7fn£1 /X N

(5 (o

sinhs /8y L (2.29)
ona-\fzhp, (k)

For the eigenvalues Xj of the discretized problem in the computa-
tional domain i1t holds

X}:—i\/ﬂ_gél)i[ﬁ%}zﬁ ; j=7,2,3 (2.24)

Using (R.23) and (2.24) one obtains finally as expressions for the

7

A
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eigenvalues Xj of "the discretized problem in the computational

domain

in Jin '\ /] 3 J N, x omz
;\ {Uaif»*—vzxy;) Re ) (A)/K

o/n[} ]

4YY
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Most critical for the stability are the modes with wave numbers

k1 k2—2 From (2.25) it follows

f)i‘g T=-i AX.X’J-A)/\/) Re/\//mc L\/} 1//.\1.1 /217}7)2 | j

(A“)g A-Z= z’/- (Aix'-l'l\y/) Re]/ax -)-A)/ \//xx &y) +
\/{ sz‘+A>/>/ +Re1// +é 1//.113: A)/)//}I{b{/aq.x +A)/)/)2}]

The maximum allowable time step to be taken now in each mesh point
is limited by the (XJ)
mesh point.

>(2.26)

K k ﬂ with the largest modulus in that
The time s%ep to be made should satisfy

/F/RK

A< gy, b b %

(2.27)

in which IrIRK is the radius of the neutral stability curve of the
considered Runge-Kutta scheme, for the argument corresponding with

lij'max,k _ -T. Inequality (2.27) comes from a von Neumann

stability anglysis, so an

linear problems. Assumed
of non-linearities can be
(2.27),

factor into so by

Irigk

Aéé 3%Cé /771max,£1=£2= '.z:

with sfact<1.

Rebe

Boundary conditions

analysis which is not valid for non-

now is that for the destabilizing effect
accounted by simply introducing a safety
satisfying

(2.28)

As physical boundary conditions have been used:



-11-

at all walls

=0

(2.29)

at the inlet the Poiseuille solution for the velocity in the

inlet part, so

—y
U= ()/ulypn '}’o&efa)l [/‘/'/oée/?)(/‘)/uppez)
V=0

- and at the outlet

P:O

As numerical boundary conditions have been used:

at the horizontal walls

op L 2%
3?: Re 2))/\fz

at the vertical wall of the step

0 1 0*u

oxX = Re ox?

- at the inlet
2*p
Dx’“.—.—O

- and at the outlet

au
VX =0

UV

DX;O

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

The numerical boundary condition at all walls is the momentum

equation normal to the corresponding wall.
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The numerical boundary condition at the inlet and outlet come from
the Poiseuille solution.

For the numerical boundary condition at the convex and concave

corner of the step, use has been made of

% oty oty

cvxax+cv)/’a>/=Re f)x1+a/2- (2.36)
respectively
) 0
ccxﬁ%-#ciyjﬁ:cj (2.37)

in which cvx,cvy,ccx and ccy are weight coefficients.
The boundary conditions are summarized in fig.2.3.

2.5. Initial solution

As initial solution has been used in both the inlet and outlet
part; the corresponding Poiseuille solution. Both solutions are
related with each other by the law of conservation of mass.

In order to be consistent with the boundary condition for the
pressure at the outlet the initial pressure has been taken equal
to zero at the outlet.

So the initial solution used in the inlet part is

=4
U= (/v,Jl,,Pez -/ggep) W‘)/’&/’)(/"/‘y’ﬁq) )

V=0 > (2038)

-8 upper=Yakep )
p=fle Qpper 'Yﬂéef)z{"'( Jupper X"Ufﬂe&}

, and the initial solution used in the outlet part is

-4 (/Ym?pe? ’)’ﬂ&lp) )

S R

V=0 > (2.39)

-8 (Yupper~ Yotep) ( )
P R e otk
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For a channel of which the step has the same height as the inlet
part and for Re=50, the initial solution is given in fig.2.4.
The pressure distribution given in fig.2.4b is the pressure

difference Re{p(m,j)-p(m ).

step’jstep

The initial solution is physically unrealistic; no separation

occurs at the convex corner of the step.

2.6. Convergence test

For the convergence test considered has been after each time step,
i.e. after each iteration with the Runge-Kutta scheme: the maximum
value for all (inner) mesh points of Eii; j=1,2,3. As convergence
criterion has now been used that aS~SéUh as this maximum is lower
than 10°°% the steady state has been reached; i.e. the iteration
procedure has converged.

2.7. Computer program

A global flow chart of the computer program has been given in
fig.2.5.

For getting a (converged) solution the first four blocks in the
flow chart are of course important but need taken together less
than 0.1 percent of the CPU TIME needed by both loops taken to-
gether.

From the inner loop in fig.2.5 it appears that the boundary
conditions are imposed not only after the corrector step, but
after each predictor step.

After having performed the inner loop, the convergence to the
steady state is investigated at all inner mesh points. Because
fii is considered for the convergence test and because At is not
ﬁ%ﬁwn for the points on the boundaries, only the inner points can
be considered for the convergence test. If the convergence test is
not satisfied for all inner mesh points a return is made; the
maximum allowable time step to be made in each inner mesh point

is computed again, making use of the latest solution, and new time
steps are made. As soon as the convergence test is satisfied at
all inner mesh points, the outer loop will be left, i.e. the
solution will have been obtained.
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3. RESULTS

3.1. Test cases

Two different geometries have been considered for the channel with

step;

- a channel with an inlet which has the same height as the step
(channel with small inlet), and

-~ a channel with an inlet which is twice as high as the step
(channel with big inlet).

The length of the inlet and outlet part of both channels is the

same. Both channels are given in fig.3.1.

In both channels the flow has been computed for Re=50.
The mesh used for both test cases is given in table 3.1 and
fig.3.2. As appears from table 3.1 and fig.3.2, both meshes are

slightly stretched.

For both test cases as safety factor on the time steps made has
been used: sfact=0.9. Divergence occurred for sfact20.95.

3.2. Convergence history

The convergence history obtained for both test cases on the
VAX 11/780 is given in fig.3.3.

For both test cases use has been made of a four-steps Runge-Kutta
scheme. In practice it also appeared that this scheme gives the
best rate of convergence. To proof this the flow in the channel
with small inlet has been computed for Re=50, using two different
two-steps Runge-Kutta schemes, and one three-steps and one four-
steps Runge-Kutta scheme. The input parameters and convergence
characteristics of these four Runge-Kutta schemes are given in
table 3.2. The two-steps Runge-Kutta scheme with sfact=%/2 has
been considered because it has recently appeared from theory that
$/2 times the maximum allowable time steps might give the best
rate of convergence obtainable with a two-steps Runge-Kutta |



-15-

scheme.
So it appears from table 3.2 that the four-steps Runge-Kutta scheme
gives the fastest convergence to the steady state.

For both test cases use has been made of b=0.5. It has appeared

that this value of b gives the best rate of convergence.

For the channel with big inlet the rate of convergence is better
than for the channel with small inlet. After 60 minutes of CPU
TIME the value of (%%)max for the channel with small and big inlet
is equal to 107" respectively 107°. The difference between these
two values 1s too large to have been caused by the somewhat smaller

number of points in the channel with big inlet.

In table 3.3 a comparison has been made between the present CPU
TIMES needed to converge to the steady state and the same CPU TIMES
as needed by some contributors to the GAMM Workshop. The CPU TIMES
of the contributors to the GAMM Workshop have been corrected for the
difference in computer used. The CPU TIMES given in table 3.3 are
the CPU TIMES needed to converge to the steady state, when making
use of the VAX 11/780.

The present CPU TIMES are nearly the same as those of two of the
contributors in table 3.3.

To illustrate the large values of (%%'max occurring in the
beginning of the time-marching procedure and the convergence

to the steady state, given are in fig.3.4 for the channel with
small inlet and Re=50: for several iteration levels; the stream-
line distribution in the neighbourhood of the step and the velocity
profile at the location which will finally become the location of
the reattachment point.

In the convergence history at the left of each streamline distri-
bution the corresponding iteration level has been indicated.
Clearly visible are the large changes in the streamline distri-
bution, occurring at large values of @%)max in the beginning of
the convergence history.

Hardly visible are the changes in the streamline distribution
occuring at the end of the convergence history, and with that
clearly visible is: the convergence to the steady state.
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3.3. Streamline distribution and velocity profiles

The streamline distribution obtained for both test cases is given
(for the entire integration regions) in fig.3.5.

In fig.3.6 and 3.7 the streamline distributions are given in more
detall and with some velocity profiles added to it.

The velocity profile in the inlet part and the velocity profile
downstream of the reattachment point are for both test cases by
very good approximation equal to the corresponding Poiseuille
velocity profile.

Concerning the other velocity profiles; the velocity profile at
the reattachment point has in agreement with the physics a slope
%§=O at the wall, and the velocity profile at the vortex center

has in agreement with the physics: u=0 in the vortex center.

For both test cases a comparison has been made with the results
obtained at VKI by Borsboom for exactly the same test cases (but
with the compressible Navier-Stokes equations and a finite volume
discretization).

The agreement between both present streamline distributions and
those of Borsboom is reasonably good. In both cases nearly the
same values have been obtained for the stream function

V=SS (udy-vdx)dxdy. The only difference between the present stream-
line distributions and those obtained by Borsboom appears in the
test case of the channel with small inlet, and concerns the loca-
tion of the reattachment point. In the present results, for the
channel with small inlet the reattachment point is located further
upstream than in the results of Borsboom.

The choice of the weight coefficients cvx and cvy has hardly any
influence on the location of the reattachment point. For both
test cases used has been: cvx=cvy=0.5.

Remarkable is that for both test cases the x-coordinate of the

vortex center is exactly 3 times smaller than the x-coordinate of
the reattachment point.
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In table 3.4 a comparison has been made between

- the present locations of the reattachment point and those
obtained by the persons already mentioned in table 3.3, and
between

- the maximum velocity component in x-direction at the location
x=0.8 and that obtained by the other persons.

The agreement between the present results and those obtained by

the others 1s better for the channel with big inlet than for the

channel with small inlet.

3.4. Pressure distribution

The pressure distribution obtained for both test cases is given
(for the entire integration regions) in fig.3.8.

Just as in fig.2.4b plotted has been the pressure difference
Re{p(m,J)-p(mstep,jstep)}.
As can be seen in both fig.3.8a and 3.8b the pressure is wiggled
in the neighbourhood of the step.

In order to remove the wiggles use has been made of several combi-
nations of numerical boundary conditions and several different

meshes.

For the numerical boundary conditions at the walls, use has been

made of:
- the inviscid momentum equation normal to the corresponding wall;

oN=0 (3-1)

- and the viscous momentum equation normal to the corresponding
wall;

(3.2)

For the numerical boundary condition for the pressure at the inlet,
use has been made of:



-18-

- the unsteady continuity equation;
U CT
Db-:'"b'ax (3-3)

- the steady momentum equation in x-direction;

?x*=0 (3.4)

- and the "upstream characteristic relation" belonging to the

system

° oy
if+bax=o

. P (3.5)
554‘55%'—'& (/uppez 'yﬂée/:)z

For the numerical boundary condition for u at the outlet, use has

only been made of the continuity equation;

& (3.6)

The momentum equation in x-direction has not been used. This
because u cannot be obtained explicitly from that equation in an

easy way.

For the numerical boundary condition for v at the outlet, use has
been made of:

- the steady momentum equation in y-direction;

Qv

X =0 (3.7)
- and the unsteady momentum equation in y-direction;

v v

L+ UL =0 (3.8)

It has appeared that of the previous numerical boundary conditions
only that for the pressure at the inlet has influence on the
smoothness of the solution. It has appeared that use of the
numerical boundary condition ——%—o at the inlet gives the
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smoothest solution.

For the numerical boundary condition for the pressure at the
convex corner of the step use has been made of both

P

F ey oy <o (3.9)

1S

CvxX 0

&

and

) ? 2 /9%y 2%y
cvx ESEc'Jr CV/§§= Re (5:?4- 2y7 (3.10)

It has appeared that neither the choice of the weight coefficients
cvx and cvy nor the use of (3.9) or (3.10) has some influence on

the smoothness of the solution.

Smoothed and in more detail the pressure distribution is given in
fig.3.9 and 3.10. (The smoothing applied is nothing else but a
summation of the pressure and coordinates of the 4 neighbouring
mesh points (m,j), (m+1,j), (m,j+1) and (m+1,j+1), and next a
dividing by 4.)

For both test cases a comparison has been made again with Borsboomn.
Borsboom’s pressure distribution in the neighbourhood of the step
is smoother and has larger gradients. This might be due to the
fact that Borsboom uses a mesh which is much finer in the neigh-
bourhood of the step and moreover better adapted to the streamline
distribution in the neighbourhood of the step (fig.3.11).

It has appeared that the coarser the mesh, the larger the wiggles,
and also the further extended the wiggles. For the channel with
small inlet a mesh which was twice as fine in both x- and y-
direction as that given in fig.3.2a gave however no improvements.
Maybe this finer mesh was not yet fine enough, or maybe it is the
not-being well-adapted of the mesh to the streamline distribution
which causes for the greater part the (last) wiggles.

3.5. Higher Reynolds number flows

Flows at higher Reynolds numbers have been considered as well. No

convergence to the steady state has been obtained (for both the
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channel with small and big inlet) for Re>150. For the channel with
small inlet the divergence history obtained for Re=150 and Re=500
is given in fig.3.12. TFor both high Reynolds number cases all
input parameters (except of course Re) were the same as those used
for the test case with Re=50.

Several possible changes have been tried separately and in combi-
nation in order to avoid the divergence; lowering of the safety
factor, use of two-steps and three-steps Runge-Kutta schemes,
application of the viscous operator in each predictor step, and
decreasing of the stretching of the mesh. No remedy has been found.
Remarkable was that the effect of lowering the safety factor with

a certain factor just led to an increase with the same factor of

the time after which divergence occurred.

3.6. Channel with cavity

In order to show that the computer program can be modified for the
computation of flows in other geometries, computed has been the
flow in a channel with cavity.

As initial solution in the channel has been used: the Poiseuille
solution for that channel, and in the cavity: no flow at all but
the same pressure distribution as in the part of the channel above
it. The initial streamline distribution and the initial velocity
profile at the center of the cavity are given in fig.3.13a.

The converged streamline distribution and the converged velocity
profile are given in fig.3.13b. In more detall the latter stream-

line distribution and velocity profile are given in fig.3.13c.
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L. CONCLUSIONS

The computational results are in agreement with the expected
physical results.

The computational results are in reasonably good agreement with
the computational results of others.

The rates of convergence obtained are nearly the same as those
obtained by some contributors to the GAMM Workshop.
The best rate of convergence is obtained with a four-steps

Runge-Kutta scheme.

The smoothness of the solution is strongly dependent on the
numerical boundary condition for the pressure at the inlet.
The smoothest solution is obtained with a zero second order

derivative of the pressure, normal to the inlet.
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5. RECOMMENDATIONS

Before making the step to the computation of more complicated flows
such as 3-dimensional, compressible or turbulent flows, the
capability to compute higher Reynolds number flows should be
improved.

A way of improving this capability is to artificially add viscosity,

taking care for the accuracy of the solution.

Once one succeeds in computing higher Reynolds number flows an
urgent demand for a faster convergence might still exist. Before
making the step to more complicated flows this demand should be
met, In order to further increase the rate of convergence,
investigated could for instance be 1f an implicit scheme exists
which is much faster than the four-steps Runge-Kutta scheme, and
if a multigrid technique can be applied to that scheme.
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table 3.1a: x-coordinates mesh for both
channel with small and big inlet

-6.00 0.21
-5.39 0.44
-4.82 0.70
~4.28 0.98
-3.78 1.29
-3.31 1.64
-2.87 2.02
-2.46 Rao4d
-2.08 2.91
-1.72 3042
-1.38 3.99
-1.07 4.62
_0077 5031
-0.50 ' 6.08
-0.24 6.93
0.00 7.87
8.91
10.05
11.32
12.72
14.27
15.98
17.87
19.96
22.26
24.82
27.64
30.75
34.19
38.00
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table 3.1b: y-coordinates mesh

channel with small inlet channel with big inlet

2.00 3.00
1.92 2.87
1.83 2.72
1.73 2.56
1.62 2.39
1.50 2.20
1.38 2.00
1.27 1.80
1.17 1.61
1.08 144
1.00 1.28
0.92 1.13
0.83 1.00
0.73 0.86
0.62 0.70
0.50 0.50
0.38 0.30
0.27 0.14
0.17 0.00
0.08

0.00
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Y
A

fig.1.1: Five-points scheme

—p <

fig.2.7: Coordinate system in physical domain
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assignment of numerical values
to all input parameters

4

mesh generation

4

assignment of the initial wvalues
to u,v and p at all mesh points

Y

computation of the neutral stability
curve of the Runge-Kutta scheme chosen

 J

computation of the maximum allowable

time step at each inner mesh point

Y

execution of one predictor or corrector
step of the Runge-Kutta scheme chosen

Y

I § : Y

imposition of the boundary
conditions to u,v and p

4

Y

no steady state! investigation at all inner mesh points

of the convergence to the steady state

y steady state!

writing of output

fig.2.5: Flow chart computer program
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(Pé
ot/ max
10°
1l min. CPU TIME =20 iterations
10741
107"
10"6 — . N
0 30 60 a0

CPU TIME (min.)

fig.3.3a: Convergence history; channel with small inlet, Re=50
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)
ot} max

1l min. CPU TIME =20 iterations

1074 \

\/ﬁ\ |
.
108 ,
0 30 60
CPU TIME (min.)

fig.3.3b: Convergence history; channel with big inlet, Re=50
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fig.3.12a: Divergence history; channel with small inlet,
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|
1l min. CPU TIME =20 iterations
0 60 120 180
CPU TIME (min.)

Re=150
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10%
1l min. CPU TIME =20 iterations
10? |
10° |
10 . . ;
0 60 120 180

CPU TIME (min.)

fig.3.12b: Divergence history; channel with small inlet, Re=500
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